If it's not what You are looking for type in the equation solver your own equation and let us solve it.
m^2-9m+7=0
a = 1; b = -9; c = +7;
Δ = b2-4ac
Δ = -92-4·1·7
Δ = 53
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-9)-\sqrt{53}}{2*1}=\frac{9-\sqrt{53}}{2} $$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-9)+\sqrt{53}}{2*1}=\frac{9+\sqrt{53}}{2} $
| 36=9(2x-8) | | 9b^2+9=-6b | | 5(4x+9)=-41+6 | | 6(-7-6k)-(k-3)=72 | | 12x-(x-7=33 | | 12x^2+13x=0 | | -49=7a-35 | | 6s-4=(2+1/4) | | 2(x-3)(2x+5)(3)=8 | | 40+5x=12x | | v/6-4=-7 | | 6x+5x=84 | | 39+84+3o=180 | | 2(x-6)(2x+5)=8 | | 4=84/v | | -32=-8(u+5) | | 18x+6=16×+6 | | 16.35x=39.75 | | 35+5x=12x | | 5(x+4)=2(x+5) | | 5x+3x+38=180 | | 10.3+2.3h=-9.2 | | 32=h | | (x-3)(2x+5)=15 | | g+7/2=10 | | -3(2y+3)-1=-4(y+6)=2y | | 60-5x=50-3x | | 6q-7=8+3q | | 7n-4=5n-6 | | 54(4x-8)=(5x-19) | | -126=2(-8p-7) | | 116+52+o=180 |